Microwave-promoted Palladium Catalyzed Suzuki Cross-coupling Reaction in Water

Lin BAI, Jin Xian WANG*

College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070

Abstract: A simple, rapid and environmental friendly method for the synthesis of biaryl compounds under microwave irradiation is reported.

Keywords: Suzuki coupling, palladium catalyst, biaryl compounds, microwave irradiation.

Suzuki coupling is probably the most versatile approach among the cross-coupling reactions and the reaction has long been the subject of intensive work in the area of transition-metal chemistry¹. In recent years, various modifications involving the catalyst, solvents, bases, reaction conditions and synthetic technique have been developed².

The Suzuki cross-coupling reaction in water is more safe, economical. It is an environmentally friendly alternative in organic synthesis. The use of water facilitates the catalyst-product separation. We supposed that the combination of metal catalysis and microwave heating in aqueous solvent will facilitate this reaction. The use of microwave irradiation in cross-coupling reaction is well acknowledged³. Recently, we have reported the environmental friendly synthesis in water by palladium-catalyzed⁴. The reactions were reviewed by the highlights of *Green Chemistry*⁵. We herein report palladium-catalyzed heterogeneous Suzuki cross-coupling reaction in water using microwave condition. The reactions are shown in the **Scheme 1** and the results are listed in **Table 1**.

Scheme 1

The experimental results showed that the microwave irradiation can shorten the coupling reaction time dramatically (from 6 h to 10 min), the yields of the products are often increased, comparing with the original method⁶.

^{*} E-mail: wangjx@nwnu.edu.cn

Table 1Synthesis of biaryls a

Entry	PhX, X=	Product	$M.P./^{\circ}C(Lit.)^{7}$	Yield(%) ^b
3a				
3b	Br	$C_6H_5-C_6H_5$	69-70 (71)	90
3c	Br	$4-CH_{3}C_{6}H_{4}-C_{6}H_{5}$	46-7 (49-50,47-8 ⁸)	91
3d	Br	4-CH ₃ CONHC ₆ H ₄ -C ₆ H ₅	148-9 (149)	92
3e	Br	$4-CH_3COC_6H_4-C_6H_5$	120-1 (121)	93
3f	Br	$4-NO_2C_6H_4-C_6H_5$	112-4 (114)	88
	Br	$4-CH_3OC_6H_4-C_6H_5$	88-9 (90)	91
3g	Br	$4-CO_2HC_6H_4-C_6H_5$	227-8 (228)	93
3h	4-BrPhBr	$4-C_6H_5-C_6H_4-C_6H_5-4'$	212-3 (213)	92
3i	4-ClPhBr	$4-ClC_6H_4-C_6H_5$	78-9 (77.7)	91
3ј	Br	$2 - C_{10}H_7 - C_6H_5$	95-6 (103-4,95-6 ⁸)	94

a. All the products gave satisfactory ¹HNMR and IR. The reaction were carried out in the presence of K_2CO_3 using PdCl₂(PPh₃)₂ as catalyst in water at 750 W for 10 min under nitrogen atmosphere. b. Yield of isolated product.

General prodecdure for the synthesis of biaryls: The aryl bromide (1.0 mmol), phenylboronic acid (1.1 mmol), K_2CO_3 (2.5 mmol), $Pd(PPh_3)_2Cl_2$ (0.02 mmol), tetrabutylamine bromide (0.3 mmol), H_2O (10 mL) were added in a bottle (50 mL), and irradiated at 750 W for 10 min in microwave oven under nitrogen. After cooling to room temperature, the reaction mixture was extracted with Et₂O (20 mL×3). The organic phase was dried over anhydrous MgSO₄. The solvent was removed by evaporation under reduced pressure to afford the biaryls. The product was recrystallized from 95% ethanol or purified by column chromatography on silica gel using petroleum/ethyl acetate (30: 1) as the eluent to give the analytically pure product.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (NO. 20272047) and the Northwest Normal University Science and Technology Development Foundation of China.

References

- 1. N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.
- 2. J. Hassan, M. sevignon, C. Gozzi, et al., Chem. Rev., 2002, 102, 1359.
- 3. M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res., 2002, 35, 717.
- a) J. X. Wang, Y. Yang, B. Wei, et al., Bull. Chem. Soc. Jpn., 2002, 75, 1381. b) J. X. Wang, Z. Liu, Y. Hu, et al., J. Chem. Research(S), 2000, 484. c) J. X. Wang, Z. Liu, Y. Hu, et al., Synth. Commun., 2002, 32, 1607.
- 5. a) D. Macquarrie, *Green Chemistry*, **2002**, (10), 48. b) D. Macquarrie, *Green Chemistry*, **2001**, (2), 8.
- 6. N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun., 1981, 11, 513.
- 7. R. C. Weast, M. J.Astle, *CRC Handbook of Chemistry and Physics*, 63 rd Ed., CRC Press, Inc.: Florida, **1982-1983**.
- 8. M. A.Tius, Tetrahedron Lett., 1981, 22, 3335.

Received 17 March, 2003